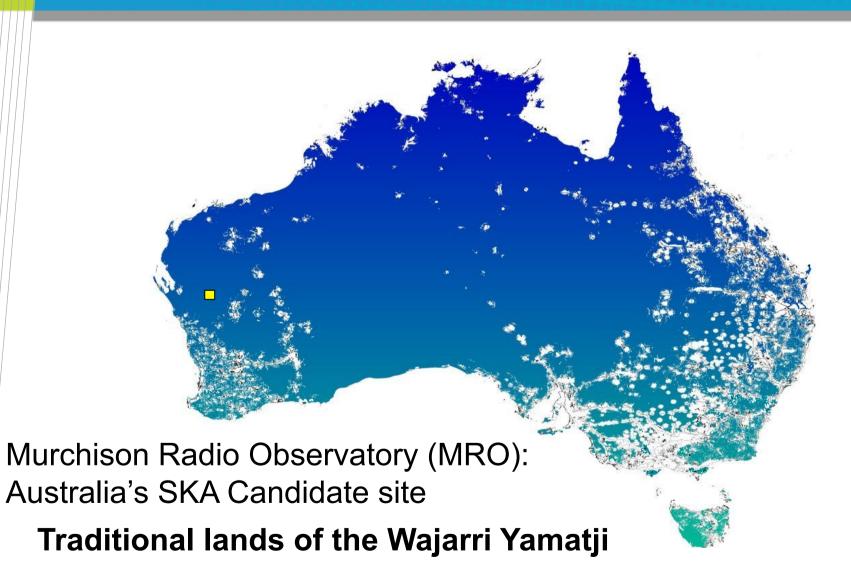


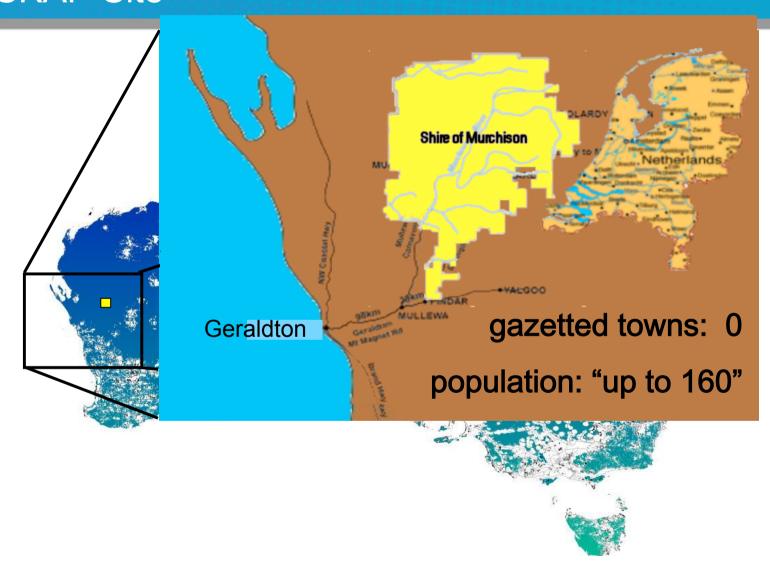
Status of ASKAP Control System

Juan Carlos Guzman

ASKAP Software Engineer – Control Software Lead

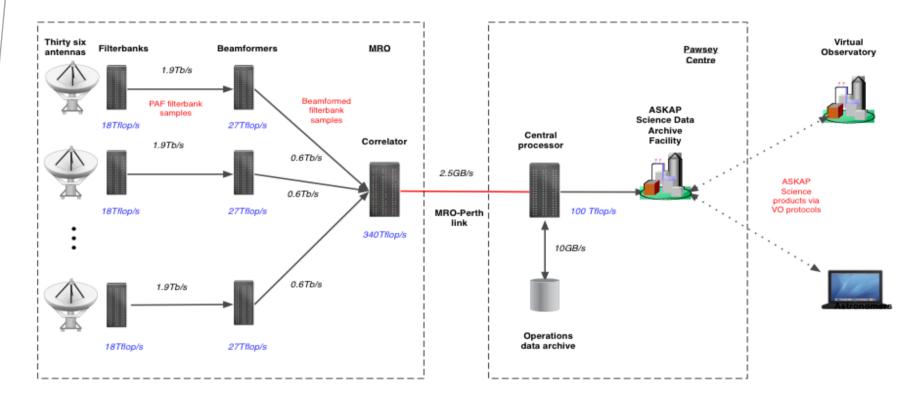

CSURO

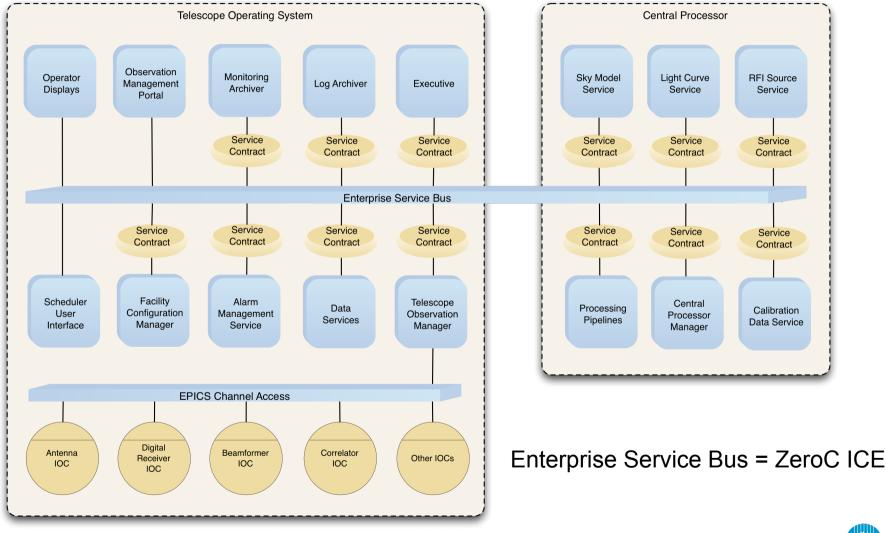
ASKAP Project Australian SKA Pathfinder = 1% SKA


- Wide field of view radio telescope
 - Sited at Boolardy, Western Australia
 - Observes between 0.7 and 1.8 GHz
 - 36 antennas, 12m diameter, 3-axis
 - Phased Array Feed (PAF) technology (36 beams)
 - 30 sq degree field of view
 - 6 antenna prototype mid 2011- Boorlardy Engineering Test Array (BETA)
 - Full system mid 2013
- Scientific instrument, optimised for survey
 - Survey HI emission from 1.7 million galaxies up z ~ 0.3
 - Deep continuum survey of entire sky
 - Polarimetry over entire sky
- Technical pathfinder
 - Demonstration of WA as SKA site
 - Phased Array Feeds
 - Computing

ASKAP Project Timeline

	Jan 2010	First antenna installed at the site
	May 2010	Subsystem's CDR completed
	Mar 2011	Installation of Full-PAF + new hw/sw backend at Parkes
	Mar 2011	SAT of antenna 2 – 6 (BETA) completed
	May 2011	Fibre-link between Geraldton and MRO complete
	Jun 2011	Installation of Full-PAF+hw/sw back-end on BETA begins
	Aug 2011	Early commissioning of BETA begins
	Aug 2011 Oct 2011	Early commissioning of BETA begins MRO infrastructure complete
	Oct 2011	MRO infrastructure complete
	Oct 2011 Jan 2012	MRO infrastructure complete Installation/SAT of antennas 7 – 36 complete
_	Oct 2011 Jan 2012 Nov 2012	MRO infrastructure complete Installation/SAT of antennas 7 – 36 complete 36 ASKAP antennas with PAF + hw/sw installed





ASKAP Data Flow

ASKAP FPGA-based signal processing chain

ASKAP Control Software Architecture

EPICS IOC Implementation

- Using EPICS base 3.14.11
 - Support (development) for Linux (x86_64) and MacOSX (Snow Leopard)
 - No need for real-time OS extensions for now
- Estimated number of records ~ 180,000 (~ 5,000/antenna)
- Estimated number of deployed IOCs ~ 40
 - SoftIOC on Linux (non-real time) OS
 - We call them Control Computers
 - 1U rack-type computers running standard Linux (debian) distro x86_64 type (diskless or solid-state disk)

EPICS IOC Implementation

- Design and write the EPICS database (list of EPICS records). Use of ICD as reference
 - Keep IOC database as simple as possible
 - Extensive use of MSI.
- Write SNL programs for some applications (version 2.0.12)
- Extensive use of EPICS ASYN framework (version 4.14)
 - Code needs to be added if field-bus protocol requires additional ASYN interfaces, i.e. driver support for the ASKAP Digitiser (UDP-based protocol)
 - Driver support can be re-used. We are planning to use same ASKAP digitiser driver support for LO, Beamformer and Correlator
- Implement an emulator (Python)
 - Essential for continuous integration and testing of high-level software components
 - Most of our hardware devices are Ethernet-enabled
- Implementation of EPICS IOC applications are done mainly by Computing Team (Control Group), but in some cases are shared development, i.e. Analog Subsystem

EPICS Implementation Status

Subsystem	Implementation Status	Fieldbus/Protocol
Antenna Drives	50 %	Ethernet/TCP (ASKAP) and Modbus/ TCP (Parkes 12m)
Pedestal and Prime Focus Analog Electronics	50 %	Ethernet/UDP(SPI)
LO	50 %	Ethernet/UDP
Timing	Completed	Ethernet/UDP/PCI
Digitiser	Completed	Ethernet/UDP
Beamformer	0% ICD in progress	Ethernet/UDP
Correlator	0 %	Ethernet/UDP
Power and Cooling	0 %	Ethernet/TCP(Modbus)/SNMP
MRO Weather Station	0 %	Ethernet/TCP
MRO Safety (Fire alarms, interlocks)	0 %	Ethernet/ModbusTCP
MRO Networking Hardware	0 %	Ethernet/SNMP

EPICS Clients Implementation

Using our own Archiver

- ASKAP will use software called MoniCA which is used for the Monitoring Archiver role at all other CASS/ATNF Observatories
- Implemented in Java
- Supports MySQL and ASCII database backends
- EPICS CA support via JCA library
- Google "open-monica" or http://code.google.com/p/open-monica/

• GUIS

- Started using EDM but there are some issues on x86_64 and MacOSX
- Converting screens to Qt 4.6 + epicsqt library (Australian Synchrotron)

Test scripts

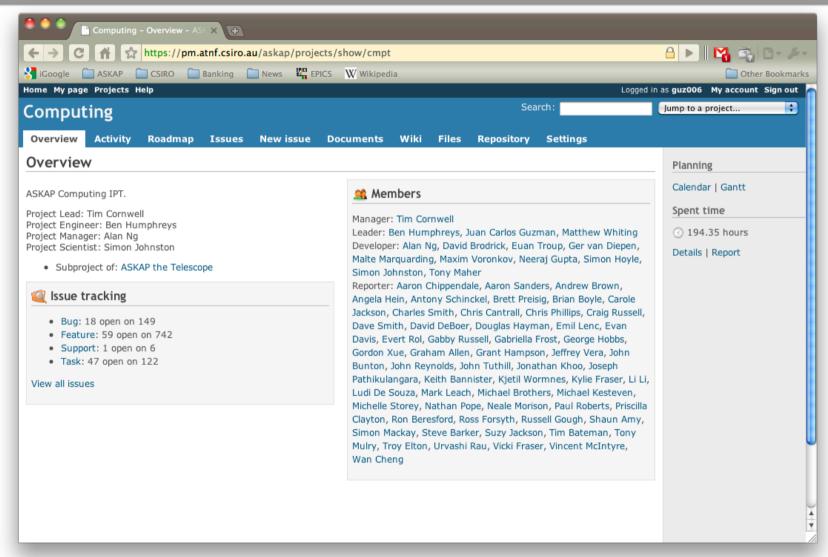
- Implemented in Python
- EPICS CA support via cothread 1.15 (Diamond)

VirtualTOS (vtos)

 Stand-alone package with SoftIOC emulating antenna IOCs + High level applications for creating/executing observations

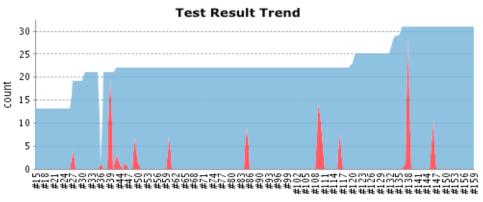
Build Infrastructure Features

- Revision control system: Subversion
- Support for C/C++, Java and Python for our code
- Platform independent
 - Compiles in Linux (Debian) and MacOSX
 - Deploy only Linux
- Automated building (and deployment) of dependencies
 - A single build command (rbuild)
 - Updates from subversion repository
 - Recursively builds a package's dependencies
 - · Written in Python
 - The dependencies.default file lists a packages dependencies
 - To avoid dependency loops have a simple dependency structure
 - Wraps several "make" tools: autotools, epics makefiles, scons, ant and setuptools
 - Integrate lots of 3rd party software as part of our build
 - Standard patching procedure and option settings
 - Support parallel builds to speed up a little bit
 - Wraps documentation generation tools: doxygen and Sphinx
 - Can build and run unit and functional test



Project Management Tool Redmine

- Switched from Trac to Redmine late 2009
 - Redmine: http://www.redmine.org
 - Open source project management web application written in Ruby on Rails
 - Allows sub-projects, so it is used by ASKAP
 - Use the concept of issues (task, bug, feature, etc.) and milestones
 - Wiki
 - Linked to source repository (SVN, CVS, Git, Mercurial, etc.)
 - Email notifications
 - Time tracking (although we don't use this)


Project Management Tool Redmine

Continuous integration


- Adopted continuous integration process in July 2009
 - Using Hudson open-source tool: https://hudson.dev.java.net/
 - ASKAPsoft codebase is tested continuously and automatically
 - Each commit to the Subversion repository results in a build/test job being spawned
 - Immediate productivity improvements obvious
 - Reduced time to detect defects (particularly regressions) from days/weeks to hours
 - · Easily able to identify exactly which change-set caused the problem
 - Trend test additions, deletions, passes and fails over time

Continuous integration

Hudson dashboard shows status of all build executors and jobs

Square Kilometer Array (SKA)

- Download the SKA animation movie from http://www.skatelescope.org/video/SKA_Animation_2010.mov
 - Credit: Swinburne University

Square Kilometer Array Top-level Timeline

2007 – 12	Telescope design and cost
2012	Site selection (Australia or Southern Africa)
2012 – 13	Establish SKA organisation + initial (10% SKA Phase 1) construction funding approval
2013 - 18	Detailed design & construction of Phase 1 at low and mid frequencies
End 2016	Construction funding approved for 100% SKA at mid and low frequencies
2017 - 22	Finish construction at low and mid frequencies
2019 ->	Science operations with Phase 1
2023	Full operations at low and mid frequencies
2013 - 22	High frequency technology development
2023 ->	Start construction of SKA at high

www.csiro.au

Australia Telescope National Facility CSIRO Astronomy and Space Science

Juan Carlos Guzman ASKAP Software Engineer

Phone: 02 9372 4457

Email: Juan.Guzman@csiro.au

Web: http://www.atnf.csiro.au/projects/askap/

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

